IBM SPSS Web Report - Output1   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - December 5, 2022

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA CHANGE ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Weight_gain_y
/METHOD=ENTER Initial_Weight_in_pounds_x1 Initial_age_in_weeks_x2
/PARTIALPLOT ALL
/RESIDUALS NORMPROB(ZRESID)
/SAVE PRED RESID.

Regression
Regression - Active Dataset - December 5, 2022


[DataSet0] 

Regression
Regression - Descriptive Statistics - December 5, 2022
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
  Mean Std. Deviation N
Weight_gain_y 6.50 2.449 8
Initial_Weight_in_pounds_x1 45.25 11.696 8
Initial_age_in_weeks_x2 7.38 2.387 8
Regression
Regression - Correlations - December 5, 2022
CorrelationsCorrelations, table, 1 levels of column headers and 2 levels of row headers, table with 5 columns and 11 rows
  Weight_gain_y Initial_Weight_in_pounds_x1 Initial_age_in_weeks_x2
Pearson Correlation Weight_gain_y 1.000 .514 .794
Initial_Weight_in_pounds_x1 .514 1.000 .017
Initial_age_in_weeks_x2 .794 .017 1.000
Sig. (1-tailed) Weight_gain_y . .096 .009
Initial_Weight_in_pounds_x1 .096 . .484
Initial_age_in_weeks_x2 .009 .484 .
N Weight_gain_y 8 8 8
Initial_Weight_in_pounds_x1 8 8 8
Initial_age_in_weeks_x2 8 8 8
Regression
Regression - Variables Entered/Removed - December 5, 2022
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 Initial_age_in_weeks_x2, Initial_Weight_in_pounds_x1b . Enter
a. Dependent Variable: Weight_gain_y
b. All requested variables entered.
Regression
Regression - Model Summary - December 5, 2022
Model SummarybModel Summary, table, 2 levels of column headers and 1 levels of row headers, table with 10 columns and 6 rows
Model R R Square Adjusted R Square Std. Error of the Estimate Change Statistics
R Square Change F Change df1 df2 Sig. F Change
1 .939a .881 .834 .999 .881 18.539 2 5 .005
a. Predictors: (Constant), Initial_age_in_weeks_x2, Initial_Weight_in_pounds_x1
b. Dependent Variable: Weight_gain_y
Regression
Regression - ANOVA - December 5, 2022
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 37.009 2 18.505 18.539 .005b
Residual 4.991 5 .998    
Total 42.000 7      
a. Dependent Variable: Weight_gain_y
b. Predictors: (Constant), Initial_age_in_weeks_x2, Initial_Weight_in_pounds_x1
Regression
Regression - Coefficients - December 5, 2022
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 12 columns and 7 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig. 95.0% Confidence Interval for B Correlations
B Std. Error Beta Lower Bound Upper Bound Zero-order Partial Part
1 (Constant) -4.192 1.888   -2.220 .077 -9.045 .662      
Initial_Weight_in_pounds_x1 .105 .032 .501 3.247 .023 .022 .188 .514 .824 .500
Initial_age_in_weeks_x2 .807 .158 .786 5.097 .004 .400 1.213 .794 .916 .786
a. Dependent Variable: Weight_gain_y
Regression
Regression - Residuals Statistics - December 5, 2022
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 4.07 10.31 6.50 2.299 8
Residual -1.075 1.409 .000 .844 8
Std. Predicted Value -1.055 1.656 .000 1.000 8
Std. Residual -1.076 1.411 .000 .845 8
a. Dependent Variable: Weight_gain_y
Charts
Charts - *zresid Normal P-P Plot - December 5, 2022
*zresid Normal P-P Plot Observed Cum Prob: 0
Expected Cum Prob: 0 Observed Cum Prob: 0.9242
Expected Cum Prob: 0.9208 Observed Cum Prob: 0.8030
Expected Cum Prob: 0.7531 Observed Cum Prob: 0.6818
Expected Cum Prob: 0.7427 Observed Cum Prob: 0.5606
Expected Cum Prob: 0.4607 Observed Cum Prob: 0.4394
Expected Cum Prob: 0.3787 Observed Cum Prob: 0.3182
Expected Cum Prob: 0.3220 Observed Cum Prob: 0.1970
Expected Cum Prob: 0.2116 Observed Cum Prob: 0.0758
Expected Cum Prob: 0.1410 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Charts
Charts - Weight_gain_y by Initial_Weight_in_pounds_x1 Partial Regression Plot - December 5, 2022
Weight_gain_y by Initial_Weight_in_pounds_x1 Partial Regression Plot Initial_Weight_in_pounds_x1: 10.025
Weight_gain_y: .2508 Initial_Weight_in_pounds_x1: -20.219
Weight_gain_y: -3.1944 Initial_Weight_in_pounds_x1: -10.138
Weight_gain_y: -.3793 Initial_Weight_in_pounds_x1: 15.618
Weight_gain_y: 1.1755 Initial_Weight_in_pounds_x1: .373
Weight_gain_y: -.2696 Initial_Weight_in_pounds_x1: 3.7806
Weight_gain_y: 1.8056 Initial_Weight_in_pounds_x1: 6.8621
Weight_gain_y: .6207 Initial_Weight_in_pounds_x1: -6.3009
Weight_gain_y: -.0094 -4 -3 -2 -1 0 1 2 -30 -20 -10 0 10 20

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Weight_gain_y"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Initial_Weight_in_pounds_x1"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"min":-20.21943573667711,"max":15.61755485893417,"format":{"numericPattern":"###"},"id":"fVariable","label":"Initial_Weight_in_pounds_x1"},{"min":-3.194357366771159,"max":1.805642633228841,"format":{"numericPattern":"###"},"id":"fVariable1","label":"Weight_gain_y"},{"min":1.0,"max":8.0,"id":"fVariable2","label":"Case Number"}],"rows":[[-6.300940438871471,-0.009404388714733258,1],[6.862068965517246,0.6206896551724146,2],[3.780564263322887,1.805642633228841,3],[0.3730407523511019,-0.2695924764890272,4],[15.61755485893417,1.175548589341693,5],[-10.13793103448275,-0.3793103448275854,6],[-20.21943573667711,-3.194357366771159,7],[10.02507836990596,0.2507836990595616,8]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Partial Regression Plot"]},{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Dependent Variable: Weight_gain_y"]}],"version":"6.0"}

Charts
Charts - Weight_gain_y by Initial_age_in_weeks_x2 Partial Regression Plot - December 5, 2022
Weight_gain_y by Initial_age_in_weeks_x2 Partial Regression Plot Initial_age_in_weeks_x2: -3.4081
Weight_gain_y: -3.5488 Initial_age_in_weeks_x2: -.3063
Weight_gain_y: -1.3217 Initial_age_in_weeks_x2: -1.3402
Weight_gain_y: -.3974 Initial_age_in_weeks_x2: 1.5715
Weight_gain_y: .8057 Initial_age_in_weeks_x2: 4.6225
Weight_gain_y: 3.4193 Initial_age_in_weeks_x2: -.3877
Weight_gain_y: 1.0966 Initial_age_in_weeks_x2: -1.3979
Weight_gain_y: -1.2261 Initial_age_in_weeks_x2: .6462
Weight_gain_y: 1.1723 -4 -2 0 2 4 -4 -2 0 2 4 6

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Weight_gain_y"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Initial_age_in_weeks_x2"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"min":-3.408093994778068,"max":4.622454308093995,"format":{"numericPattern":"###"},"id":"fVariable","label":"Initial_age_in_weeks_x2"},{"min":-3.548825065274151,"max":3.419321148825065,"format":{"numericPattern":"###"},"id":"fVariable1","label":"Weight_gain_y"},{"min":1.0,"max":8.0,"id":"fVariable2","label":"Case Number"}],"rows":[[0.64621409921671,1.172323759791123,1],[-1.397911227154047,-1.226109660574412,2],[-0.3877284595300257,1.096605744125327,3],[4.622454308093995,3.419321148825065,4],[1.571540469973891,0.8057441253263704,5],[-1.340208877284595,-0.3973890339425585,6],[-0.3062663185378591,-1.321671018276763,7],[-3.408093994778068,-3.548825065274151,8]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Partial Regression Plot"]},{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Dependent Variable: Weight_gain_y"]}],"version":"6.0"}